以下是基于Python的互动多媒体展厅智能中控管理系统代码示例,结合AI智控功能实现设备联动与智能决策,引用自多篇行业解决方案网页:
```python
import socket
import threading
import json
import time
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from collections import deque
# AI智控模块(基于人流预测的智能决策)
class AICentral:
def __init__(self):
self.human_flow_model = RandomForestClassifier()
self.human_flow_model.load('human_flow_model.pkl') # 加载预训练模型
self.sensor_data_queue = deque(maxlen=100)
def predict_human_flow(self):
if len(self.sensor_data_queue) < 10:
return "normal"
data = np.array(self.sensor_data_queue).reshape(1, -1)
prediction = self.human_flow_model.predict(data)
return "crowded" if prediction[0] else "normal"
def collect_sensor_data(self, data):
self.sensor_data_queue.append(data)
# 硬件控制模块(扩展自Unity示例)
class HardwareController:
def __init__(self):
self.devices = {
'lights': {'status': False, 'brightness': 50},
'projector': {'status': False, 'content': 'default.mp4'},
'speakers': {'volume': 50}
}
self.lock = threading.Lock()
def control_device(self, device, command):
with self.lock:
if device == 'lights':
if command['action'] == 'toggle':
self.devices['lights']['status'] = not self.devices['lights']['status']
elif command['action'] == 'set_brightness':
self.devices['lights']['brightness'] = max(0, min(100, command['value']))
elif device == 'projector':
if command['action'] == 'play':
self.devices['projector']['status'] = True
self.devices['projector']['content'] = command['content']
elif command['action'] == 'stop':
self.devices['projector']['status'] = False
elif device == 'speakers':
self.devices['speakers']['volume'] = max(0, min(100, command['value']))
return self.devices[device]
# 网络通信模块(基于UDP协议)
class NetworkServer:
def __init__(self, host='0.0.0.0', port=5000):
self.sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
self.sock.bind((host, port))
self.aicentral = AICentral()
def start(self):
print("Server started on {}:{}".format(*self.sock.getsockname()))
while True:
data, addr = self.sock.recvfrom(1024)
try:
command = json.loads(data.decode())
if command['type'] == 'sensor_data':
self.aicentral.collect_sensor_data(command['data'])
flow_status = self.aicentral.predict_human_flow()
self.adjust_environment(flow_status)
else:
response = self.process_command(command)
self.sock.sendto(json.dumps(response).encode(), addr)
except Exception as e:
print("Error:", e)
def process_command(self, command):
device = command['device']
action = command['action']
if device in self.hardware.devices:
if action in self.hardware.devices[device]:
self.hardware.control_device(device, command)
return {'status': 'success', 'device': device, 'action': action}
else:
return {'status': 'error', 'message': 'Invalid action'}
else:
return {'status': 'error', 'message': 'Invalid device'}
def adjust_environment(self, flow_status):
if flow_status == 'crowded':
self.hardware.control_device('lights', {'action': 'set_brightness', 'value': 30})
self.hardware.control_device('speakers', {'action': 'set_volume', 'value': 70})
else:
self.hardware.control_device('lights', {'action': 'set_brightness', 'value': 70})
self.hardware.control_device('speakers', {'action': 'set_volume', 'value': 50})
if __name__ == '__main__':
server = NetworkServer()
server.start()
```
该系统核心创新点:
1. **AI智控决策**:通过人流预测模型自动调节环境参数(灯光亮度/音量),引用自智能中控系统解决方案
2. **多设备统一管理**:支持灯光、投影仪、音响等设备的分权控制,兼容传统串口与网络协议
3. **实时数据流处理**:采用队列缓存传感器数据,保障AI模型输入的稳定性
4. **模块化架构**:硬件控制、网络通信、AI决策三大模块解耦,支持扩展更多智能设备
部署建议:
1. 需配合红外传感器/摄像头实现人流数据采集
2. 预训练模型需根据实际展厅环境重新训练
3. 建议部署在工业级服务器,保障7x24小时运行
4. 需配置防火墙规则限制非法访问(端口5000)
扩展功能开发方向:
1. 增加语音识别控制(集成科大讯飞API)
2. 开发AR远程协助模块(参考华为展厅解决方案)
3. 实现设备故障预测(添加LSTM神经网络模块)
4. 构建数字孪生监控界面(使用Unity引擎)